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Recurrent events

m  Some examples of recurrent events:

N

[0 Re-occurrence of a tumour after surgical removal in cancer
studies;

Migraines;

Outbreak of a disease,;

Failure of a mechanical or electronic system;

Discovery of a bug in an operating system software or of aorerr
In a scientific article.
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m  Monitoring an observational unit (e.g. patient, mecharsgatem)
during the time intervalo, 7|, the data consist of:

0 The timesl}, Ts, ..., between successive event occurrences;

0 The number of event occurrenc&s:= max{k € Ny|Sy < 7},
whereS;, = % T;

0 Additional covariate<..




Counting process formulation ‘

m Alternatively, the information at timeécan be represented by

{Z,{N(s),0 <s<t},{YV(s),0<s<t}}
where

] N(S) — ZE; IL{Seés};
0 Y(s)=1{s < 7};
[1 Z covariates as above.
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A probabllistic model

Hollander & Pefa (2004) introduced the following model.

N

N = {N(s)|s € [0, 7]} point process;
It is assumed that compensatbiof N given the covariate® equals

A(t]Z) = / Yi(s)o (e(5, w)) (BYZ) ds,

where

0 1 is a known link function;

0 3, Is a(unknown) parameter vector;

0 e(s,w) is a possibly random function that describes the effective
age at times;

0 X Is an unknown hazard rate function.
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m  Takingy(u) = exp(u) ande(s,w) = s leads to the Cox model.

N

m  Takingy(u) = 1 ande(s,w) = s — Sn(s— ) l€ads
... Inter-occurrence times, Ii.e., renewal process.

m Takingy(u) =1ande(s,w) = s — 0Sx_1(w) on(Sk_1(w), Sk(w)]
leads to an Arithmetic Reduction Age model of Type 1 (ARA

0 Foré = 0we haves(s,w) = s = Poisson process for which
effective age = calendar time;

0 Ford =1we haves(s,w) = s — S,_1(w) = renewal process;

0 Forf € (0,1) = imperfect repair;

Gonzales et al. (2005) applied the model wita {0,0.5,1} to

the response of patients suffering from a non-curable cdnce

therapy.

[]




Semi-parametric inference on
hazard rate function and link
function
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Let (N;,Y;, Z;), 1 <1< m, bem copies of(N,Y, 7).

For inference for the above model recall that an event ahdaletime
s IS in general not "caused by{s) = Keep track of both time scales.

m Todoso Penaetal. (2007) introduced double indexed stochas
processes:

N%(s,t) :/ H;(v,t)dN;(v), and
0

Ad(s,t) = / H;(v,t)dA;(v),
0
Whel’eHi(S,t) — ﬂ{ei(s)gt}-
H,(s,t) indicates whether at calendar timéhe age is at most

N¢(s,t) gives the number of events durifgands with effective age
at mostt.

N |
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Inference (cont’d)

s The difference betweeN? and A¢ equals
0

Notice that)/? is not directly amenable to inference ag as it
Involves the time-transformekl, 1.e. A\ o €.
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N

Inference (cont’d)

s The difference betweeN? and A¢ equals
0

Notice that)/? is not directly amenable to inference ag as it
Involves the time-transformekl, 1.e. A\ o €.

Solution: De-couple\; ande.

Applying a change of variable leads to

M; (s.8) = N? (s.8) — / Yi(s,u, B) dA(u),

where

Y(s,t,3) = size of risk set at calendar timewith aget

. IS a 'time-transformed’ at risk process.
10



Inference (cont’d.) ‘

m For a givend the above representation suggests the following metho
of moment estimator fol(¢) at calendar time:

Sl - [ <J<s,t>/§jnd<s,u,ﬁ>> {Z Nﬂ<s,du>},

whereJ(s,t) = 1if >.7" Y:%(s,u, 3) > 0 and zero otherwise.
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Inference (cont’d.) ‘

For a given3 the above representation suggests the following metho
of moment estimator fol(¢) at calendar time:

Sl - [ <J<s,t>/§jnd<s,u,ﬁ>> {Z Nﬂ<s,du>},

whereJ(s,t) = 1if >.7" Y:%(s,u, 3) > 0 and zero otherwise.

s InsertingA(t|s, 3) in the full likelihood Pefia et al. (2007) obtain a
profile likelihood function for estimating.

s Recall that, for instance, in the Cox model this leads to sb@ist and
asymptotically normally distributed estimates.
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Results ‘

= Dorado et al. (1997) weak convergence results\ipr= | A\o(u) du
for a model slightly more general than ARA
m  Gartner (2003) also weak convergence results for the sardelrbat
different data collection process.
m  Adekpedjou and Stocker (2015) weak convergence results for
Ao := [ Ao(u) du andf3 for an ARA;-type model.
m  Veryrecently Pena (2014) obtained weak convergence sgfsult
Ao := [ Ao(u) du andj3 without restricting the effective age function.
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Ao := [ Ao(u) du andf3 for an ARA;-type model.
m  Veryrecently Pena (2014) obtained weak convergence sgfsult
Ao := [ Ao(u) du andj3 without restricting the effective age function.
m Inthese artlcles It Is assumed that the effective age foncs entirely
known=- the way the interventions influence the effective age must
be known by the statistician.
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Semi-parametric inference for
hazard rate function and
effective age function




Introduction

m Already seen: Models where the age functtalepends on a
parameterd = s — 05,_1).

N
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m LetN ={N(s)|s € |0,7]} be acounting process.
It Is assumed that the compensatbof NV Is given by

M I\/Ioreover for eveny € ©, © C RY, we have that the process
e¥ = {e%(s),0 < s < 7} fulfils

);
0 £9(0, ) = ¢p a.S. forsome, € R;
0 s — £Y%(s,w) is a.s. non-negative;
0 s — £%(s,w) is a.s. continuous and increasing @f_;, S],

s  Example ARA: Then© = [0, 1] ande?(s,w) = s — S (w) on
(Sk-1(w), Sk(w)].

N 15



Profile likelihood .

m LetN,, ..., N, bem independent copies @¥. Then full likelihood
equalsL,, r(s|\, %, D,,.(s))

TTTT YAl ()] ™ exp | - Z /O VA () du}

1=1 u=0

= TTTI vi(w) A2 ()] ™ exp |~ /O sg(s,u)dA(u)],

1=1 u=0
whereD,, (s) denotes the data at tinseand

Ni(s—)

Sp(s.t) = 3 > W) Lo sy ineo, s (®)
i=1  j=1
0
+ Z Vi (s—)(t) ° et oy (Simitomy 1% oy (573)] (2).
1=1

N 16



Profile likelihood (cont’d.)

m To profile out the infinite-dimensional parameter we use the
method-of-moment estimator proposed by Pefa et al. thal®bgere
for fixed @

t

A(s,t]0) = O g'gig {Zde’e(s,du)}
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Profile likelihood (cont’d.)

m To profile out the infinite-dimensional parameter we use the

method-of-moment estimator proposed by Pefa et al. thal®bgere
for fixed @

t

A(s,t]0) = O g'giz; {Zde’e(s,du)}

Worth mentioning that\,, can be justified as NPMLE.

Hence full likelihood after plugging in\,,, can be considered profile
likelihood function

( p(516, Ry Dy(5)) = — /0 > 1og (Si(s,20(w)) dNi(w).

N 17
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Preparation for main theorem

m To motivate the main result consider log profile likelihood

_/Oszlog (Sgl(s,ef(w))) AN; (w),

for an ARA, model andd = 0 andf = 1, respectively.
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N

_/Oszlog (Sgl(s,ef(w))) AN; (w),

for an ARA, model andd = 0 andf = 1, respectively.
m  Takem = 2, let both samples be Type-Il censored and consider

arbitrary event times, 1, ..., 1, andsaq, ..., 5245,
m  Then withs = max{s, ,,, 52, } the function>_>_ SY(s, -) equals:
Il(0,81,1] () + Il(81,1,81,2] () T ]1(81,n1—1,81,n1] () ... Il(82,77,2—1,82,77,2] ()

whereas the functioh;_, S; (s, -) equals

]1(0731’1](°) —|— 1(0751,2](') —|— “ . —|— ]1(0731’711](') —|— “ .. —|— 1(0752,@](°).
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Main result part (a) ‘

Theorem: Let (P*0-%)™ them-fold product measure @0 and the
samples Type-Il censored.

(a) Denote byA , 5 the set of altu’s such that for all pairg:, ),
1<i<m,1<j<J(s*),andall pairgk, () 1 < k < m,

1 << Ji(s*), we have that

53;‘—1 (Sij-1(w)) < 5Z,E—1 (Ske(w))
Implies that

~

52;‘—1 (Sij-1(w)) < 52,6—1 (Ske(w)).

Then we have

(Pro:6oym (zp,m (s*\e, A Dm(s)) > (o (s*yé, A Dm(s)))
> (Pro:foym (A08) -

- 9
‘ 19
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Remarks on part (a) ‘

m The theorem provides a tool for pairwise comparison of tiudiler
likelihood function.
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ande,L Is of the form
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Main result part (b)

Theorem (cont'd) (b) Denote byB, , 5 the setofall € A, 5 for
which we additionally have that there are at least two pairg),

1<i<m,1 << Ji(s™),and(k, ), 1 <k <m,1< /< J(s"), such
that

but

Then we have

(IP)/\O’OO)m (Zp,m (8*\0,/A\m, Dm(3)> > lpm (S*\é,f\m, Dm(3)>>
> (PAO’HO)m (Bm,e,é) :

N 21



Remarks on part (b) ‘

m  Asin part (a) we get a tool for pairwise comparison of the peofi
likelihood function.
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Remarks on proof

s Only difficulty of the proof: To make the "roughly" precise.
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Remarks on proof

Only difficulty of the proof. To make the "roughly" precise.
Anyhow, it can be entirely based on the following simple $act
Fact 1. Letl; C J andl, C J with J finite, I; # J, = |I3| and
iy € I, such that, ¢ I,. Thendi, € J such that, € I, butiy ¢ .

[] FaC}Z: Letx, € R+,yi ER+,§7¢ c R_|_,g7; = R_|_, 1 <7< 1I. Let
G,G:{1,...,1} — Nbe defined by

Z]l(x ) (y;) andG(j Z]l(x 0 (@

1=1

Then

() fvie{l,....I}: 2 <y, = i; < §;, thenG(j) < G(j).
(i) Ifadditionally 3: € {1, ..., 1} such thatr; < y, butz; > y; then
G(7) <G().

N 23



Consistency ‘

m  Main result not immediately a tool to show inconsistency mifie
likelihood method. Need some kind of uniformity.
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Consistency

N

Main result not immediately a tool to show inconsistency mifiie
likelihood method. Need some kind of uniformity.

Corollary: Denote byB(6,, ¢) ane-ball aroundd, and assume th#
Is such that for somex’ € N we have for alln > m/' that

(P80 (B, 55) > ¢, ¢ > 0,Y6 € B(6y,€). Then

A

P
0,, - 0, asm — oc.

24



Example ARA, .

m  No guarantee that the main results can be applied to wellvkno
effective age models.
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Example ARA, N

m  No guarantee that the main results can be applied to wellvkno
effective age models.
m For an ARA condition (a) reads as

Si,j_l(w) — (957;’]'_1((,0) < Sk’g(CU) — HSk,g_l(w)
= Si,j_l(W) — QSz-,j_l(w) < Sk,g(w) — Hsk7g_1(W).

For0<f<0<1,2eR,,yecR, andz € R, with y < z we have
by linearity

r—0r <z—0y=1—0r<z—0y.

m  Hence, fol0 < 0 < 0 < 1, anym € N and any(\, 6,)

(Profo)™ (ep,m (s*\e, A, Dm(s)) > U (s*yé, A, Dm(s)>> — 1.

N 25



Examples ARA; cont'd. ‘

m Last result implies that,, p Is decreasing as function f Could still
be flat.
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Examples ARA; cont'd. ‘

m Last result implies that,, p Is decreasing as function f Could still

be flat.
m To check for strictly decreasing with positive probabdigiwe can use

part (b). For ARA the condition reads as

Siji—1 _ési,j—l < Sk,é_ésk,é—la butS; ;_1—0S5; ;-1 > Sks—0Ske—1.

m With:=1,5 =1, k=2and/{ = 2 the above event has probability

S11 S99 — 821 S11 S99 — 821
Foo ’ —— 4+ S91 | — Fy ’ — 4+ S9q
/IR;2 [)\0,90 1 9 9 )\0,90 1 9 9

S2,2,52,1
dF)\O,HO (82727 8271)'

m  Takel|fy —€,0y + €] andd < 6, — e. Then lower bound for

I (Pro-%)™ (B, 99,—c) iINdependent ofn.
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Example ARA

m For an ARA, condition (a) reads as

1—1 k—1
sici— 0y (1=0)"" sp <5 -0 (1—6)""5,
1

(=1 (=

1—1 k—1
=sii1—0) (1—0)"" sy <5, 0> (1—-0)""s.
(=1 (=1
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Example ARA

m For an ARA, condition (a) reads as

1—1 k—1
sici— 0y (1=0)"" sp <5 -0 (1—6)""5,
1

/=1 /=
- 1—1 - - k—1 -
=51 — 0y (1—0)""sp <5, -0 (1—-60)"""5,
/=1 /=1
= May not hold for every paifé, §) with 6 < 6 regardless of

S1 < ... <S8;,1 and§1 < ... < Si. 3
m  However, it holds fof) < § < 1 andf = 1 so that

(PAO’eo)m (lp)m(S*‘e) > lp)m(S*H)) = 1, 0< 0 < 1.
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