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■ Monitoring an observational unit (e.g. patient, mechanical system)
during the time interval[0, τ ], the data consist of:

◆ The timesT1, T2, . . . , between successive event occurrences;
◆ The number of event occurrencesK := max{k ∈ N0|Sk ≤ τ},

whereSk =
∑k

ℓ=1 Tℓ;
◆ Additional covariatesZ.
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■ Alternatively, the information at timet can be represented by

{Z, {N(s), 0 ≤ s ≤ t}, {Y (s), 0 ≤ s ≤ t}},

where

◆ N(s) =
∑∞

ℓ=1 1{Sℓ≤s};
◆ Y (s) = 1{s ≤ τ};
◆ Z covariates as above.
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Hollander & Peña (2004) introduced the following model:

■ N = {N(s)|s ∈ [0, τ ]} point process;
■ It is assumed that compensatorA of N given the covariatesZ equals

A(t|Z) =

∫ t

0

Yi(s)λ0 (ε(s, ω))ψ(β
′
0Z) ds,

where

◆ ψ is a known link function;
◆ β0 is a (unknown) parameter vector;
◆ ε(s, ω) is a possibly random function that describes the effective

age at times;
◆ λ0 is an unknown hazard rate function.
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■ Takingψ(u) = exp(u) andε(s, ω) = s leads to the Cox model.

■ Takingψ(u) = 1 andε(s, ω) = s− SN(s−,ω) leads
i.i.d. inter-occurrence times, i.e., renewal process.

■ Takingψ(u) = 1 andε(s, ω) = s− θSk−1(ω) on (Sk−1(ω), Sk(ω)]
leads to an Arithmetic Reduction Age model of Type 1 (ARA1).

◆ For θ = 0 we haveε(s, ω) = s⇒ Poisson process for which
effective age = calendar time;

◆ For θ = 1 we haveε(s, ω) = s− Sk−1(ω) ⇒ renewal process;
◆ For θ ∈ (0, 1)⇒ imperfect repair;
◆ Gonzales et al. (2005) applied the model withθ ∈ {0, 0.5, 1} to

the response of patients suffering from a non-curable cancer to a
therapy.
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s is in general not "caused by"λ(s)⇒ Keep track of both time scales.
■ To do so Peña et al. (2007) introduced double indexed stochastic

processes:

Nd
i (s, t) =

∫ s

0

Hi(v, t) dNi(v), and

Ad
i (s, t) =

∫ s

0

Hi(v, t) dAi(v),

whereHi(s, t) = 1{ǫi(s)≤t}.

■ Hi(s, t) indicates whether at calendar times the age is at mostt.
■ Nd

i (s, t) gives the number of events during0 ands with effective age
at mostt.
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■ The difference betweenNd
i andAd

i equals

Md
i (s, t) =

∫ s

0

Hi(v, t) dMi(v) with Mi = Ni − Ai.

Notice thatMd
i is not directly amenable to inference onλ0, as it

involves the time-transformedλ0, i.e.λ0 ◦ ǫ.
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■ The difference betweenNd
i andAd

i equals

Md
i (s, t) =

∫ s

0

Hi(v, t) dMi(v) with Mi = Ni − Ai.

Notice thatMd
i is not directly amenable to inference onλ0, as it

involves the time-transformedλ0, i.e.λ0 ◦ ǫ.
■ Solution: De-coupleλ0 andǫ.
■ Applying a change of variable leads to

M ∗
i (s, t) = N∗

i (s, t)−

∫ t

0

Y d
i (s, u,β) dΛ(u),

where

Y d
i (s, t,β) = size of risk set at calendar times with aget

is a ’time-transformed’ at risk process.
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■ For a givenβ the above representation suggests the following method
of moment estimator forΛ0(t) at calendar times:

Λ̂(t|s,β) =

∫ t

0

(
J(s, t)/

m∑

i=1

Y d
i (s, u,β)

)[
m∑

i=1

Nd
i (s, du)

]
,

whereJ(s, t) = 1 if
∑m

i=1 Y
d
i (s, u,β) > 0 and zero otherwise.
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■ For a givenβ the above representation suggests the following method
of moment estimator forΛ0(t) at calendar times:

Λ̂(t|s,β) =

∫ t

0

(
J(s, t)/

m∑

i=1

Y d
i (s, u,β)

)[
m∑

i=1

Nd
i (s, du)

]
,

whereJ(s, t) = 1 if
∑m

i=1 Y
d
i (s, u,β) > 0 and zero otherwise.

■ InsertingΛ̂(t|s,β) in the full likelihood Peña et al. (2007) obtain a
profile likelihood function for estimatingβ.

■ Recall that, for instance, in the Cox model this leads to consistent and
asymptotically normally distributed estimates.
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■ Dorado et al. (1997) weak convergence results forΛ0 :=
∫
λ0(u) du

for a model slightly more general than ARA1.
■ Gärtner (2003) also weak convergence results for the same model but

different data collection process.
■ Adekpedjou and Stocker (2015) weak convergence results for

Λ0 :=
∫
λ0(u) du andβ for an ARA1-type model.

■ Very recently Peña (2014) obtained weak convergence results for
Λ0 :=

∫
λ0(u) du andβ without restricting the effective age function.



Results

12

■ Dorado et al. (1997) weak convergence results forΛ0 :=
∫
λ0(u) du

for a model slightly more general than ARA1.
■ Gärtner (2003) also weak convergence results for the same model but

different data collection process.
■ Adekpedjou and Stocker (2015) weak convergence results for

Λ0 :=
∫
λ0(u) du andβ for an ARA1-type model.

■ Very recently Peña (2014) obtained weak convergence results for
Λ0 :=

∫
λ0(u) du andβ without restricting the effective age function.

■ In these articles it is assumed that the effective age function is entirely
known⇒ the way the interventions influence the effective age must
be known by the statistician.
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■ It is assumed that the compensatorA of N is given by

A(t) =

∫ t

0

Y (s)λ(εθ(s)) ds.

■ Moreover, for everyθ ∈ Θ, Θ ⊂ R
d, we have that the process

εθ = {ǫθ(s), 0 ≤ s ≤ τ} fulfils

◆ εθ(0, ω) = c0 a.s. for somec0 ∈ R+;
◆ s→ εθ(s, ω) is a.s. non-negative;
◆ s→ εθ(s, ω) is a.s. continuous and increasing on(Sk−1, Sk],

k ∈ N.

■ Example ARA1: ThenΘ = [0, 1] andεθ(s, ω) = s− θSk−1(ω) on
(Sk−1(ω), Sk(ω)].
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■ LetN1, . . . , Nm bem independent copies ofN . Then full likelihood
equalsLm,F (s|λ, ε

θ,Dm(s))

m∏

i=1

s∏

u=0

[
Yi(u)λ(ε

θ

i (u))
]Ni(∆u)

exp

[
−

m∑

i=1

∫ s

0

Yi(u)λ(ε
θ

i (u)) du

]

=
m∏

i=1

s∏

u=0

[
Yi(u)λ(ε

θ

i (u))
]Ni(∆u)

exp

[
−

∫ ∞

0

Sθ

m(s, u) dΛ(u)

]
,

whereDm(s) denotes the data at times and

Sθ

m(s, t) :=

m∑

i=1

Ni(s−)∑

j=1

γθi,j−1(t) · 1(εθi,j−1(Si,j−1+),εθi,j−1(Si,j)](t)

+
m∑

i=1

γθi,Ni(s−)(t) · 1(εθ
i,Ni(s−)

(Si,Ni(s−)+),εθ
i,Ni(s−)

(s∧τi)]
(t).
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■ To profile out the infinite-dimensional parameter we use the
method-of-moment estimator proposed by Peña et al. that equals here
for fixedθ

Λ̂m(s, t|θ) :=

∫ t

0

Jθ

m(s, u)

Sθ
m(s, u)

[
m∑

i=1

Nd,θ
i (s, du)

]
.
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■ To profile out the infinite-dimensional parameter we use the
method-of-moment estimator proposed by Peña et al. that equals here
for fixedθ

Λ̂m(s, t|θ) :=

∫ t

0

Jθ

m(s, u)

Sθ
m(s, u)

[
m∑

i=1

Nd,θ
i (s, du)

]
.

■ Worth mentioning that̂Λm can be justified as NPMLE.
■ Hence full likelihood after plugging in̂Λm can be considered profile

likelihood function

ℓm,P (s|θ, Λ̂m,Dm(s)) = −

∫ s

0

m∑

i=1

log
(
Sm(s, ε

θ

i (w))
)
dNi(w),
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Theorem: Let (Pλ0,θ0)m them-fold product measure ofPλ0,θ0 and the
samples Type-II censored.
(a) Denote byAm,θ,θ̃ the set of allω’s such that for all pairs(i, j),
1 ≤ i ≤ m, 1 ≤ j ≤ Ji(s

∗), and all pairs(k, ℓ) 1 ≤ k ≤ m,
1 ≤ ℓ ≤ Jk(s

∗), we have that

εθi,j−1(Si,j−1(ω)) < εθk,ℓ−1(Sk,ℓ(ω))

implies that

εθ̃i,j−1(Si,j−1(ω)) < εθ̃k,ℓ−1(Sk,ℓ(ω)).

Then we have

(Pλ0,θ0)m
(
ℓP,m

(
s∗|θ, Λ̂m,Dm(s)

)
≥ ℓP,m

(
s∗|θ̃, Λ̂m,Dm(s)

))

≥ (Pλ0,θ0)m
(
Am,θ,θ̃

)
.
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Theorem (cont’d) (b) Denote byBm,θ,θ̃ the set of allω ∈ Am,θ,θ̃ for
which we additionally have that there are at least two pairs(i, j),
1 ≤ i ≤ m, 1 ≤ j ≤ Ji(s

∗), and(k, ℓ), 1 ≤ k ≤ m, 1 ≤ ℓ ≤ Jk(s
∗), such

that

εθ̃i,j−1(Si,j−1(ω)) < εθ̃k,ℓ−1(Sk,ℓ(ω))

but

εθi,j−1(Si,j−1(ω)) ≥ εθk,ℓ−1(Sk,ℓ(ω)).

Then we have

(Pλ0,θ0)m
(
ℓP,m

(
s∗|θ, Λ̂m,Dm(s)

)
> ℓP,m

(
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(
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)
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■ Fact 1: Let I1 ⊂ J andI2 ⊂ J with J finite, I1 6= J , |I1| = |I2| and

∃i1 ∈ I1 such thati1 /∈ I2. Then∃i2 ∈ J such thati2 ∈ I2, but i2 /∈ I1.

■ Fact 2: Let xi ∈ R+, yi ∈ R+, x̃i ∈ R+, ỹi ∈ R+, 1 ≤ i ≤ I. Let
G, G̃ : {1, . . . , I} → N be defined by

G(j) :=
I∑

i=1

1(xi,∞)(yj) andG̃(j) :=
I∑

i=1

1(x̃i,∞)(ỹj).

Then

(i) If ∀i ∈ {1, . . . , I}: xi < yj ⇒ x̃i < ỹj, thenG(j) ≤ G̃(j).
(ii) If additionally ∃i ∈ {1, . . . , I} such that̃xi < ỹj butxi ≥ yj then

G(j) < G̃(j).
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likelihood method. Need some kind of uniformity.
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■ Main result not immediately a tool to show inconsistency of profile
likelihood method. Need some kind of uniformity.

■ Corollary: Denote byB(θ0, ǫ) anǫ-ball aroundθ0 and assume thatθ
is such that for somem′ ∈ N we have for allm ≥ m′ that
(Pλ0,θ0)m

(
Bm,θ,θ̃

)
≥ c, c > 0, ∀θ̃ ∈ B(θ0, ǫ). Then

θ̂m
P
9 θ0, asm→ ∞.
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■ No guarantee that the main results can be applied to well-known
effective age models.

■ For an ARA1 condition (a) reads as

Si,j−1(ω)− θSi,j−1(ω) < Sk,ℓ(ω)− θSk,ℓ−1(ω)

⇒ Si,j−1(ω)− θ̃Si,j−1(ω) < Sk,ℓ(ω)− θ̃Sk,ℓ−1(ω).

For0 ≤ θ < θ̃ ≤ 1, x ∈ R+, y ∈ R+ andz ∈ R+ with y < z we have
by linearity

x− θx < z − θy ⇒ x− θ̃x < z − θ̃y.

■ Hence, for0 ≤ θ < θ̃ ≤ 1, anym ∈ N and any(λ0, θ0)

(
P
λ0,θ0

)m (
ℓP,m

(
s∗|θ, Λ̂m,Dm(s)

)
≥ ℓP,m

(
s∗|θ̃, Λ̂m,Dm(s)

))
= 1.
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■ Last result implies thatℓm,P is decreasing as function ofθ. Could still
be flat.

■ To check for strictly decreasing with positive probabilities we can use
part (b). For ARA1 the condition reads as

Si,j−1− θ̃Si,j−1 < Sk,ℓ− θ̃Sk,ℓ−1, butSi,j−1−θSi,j−1 ≥ Sk,ℓ−θSk,ℓ−1.

■ With i = 1, j = 1, k = 2 andℓ = 2 the above event has probability
∫

R2

[
F

S1,1

λ0,θ0

(
s2,2 − s2,1

1− θ̃
+ s2,1

)
− F

S1,1

λ0,θ0

(
s2,2 − s2,1
1− θ

+ s2,1

)]

dF
S2,2,S2,1

λ0,θ0
(s2,2, s2,1).

■ Take[θ0 − ǫ, θ0 + ǫ] andθ < θ0 − ǫ. Then lower bound for
(Pλ0,θ0)m (Bm,θ,θ0−ǫ) independent ofm.
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■ For an ARA∞ condition (a) reads as

si−1 − θ
i−1∑

ℓ=1

(1− θ)i−1−ℓsℓ < s̄k − θ
k−1∑

ℓ=1

(1− θ)k−1−ℓs̄ℓ

⇒si−1 − θ̃
i−1∑

ℓ=1

(1− θ̃)i−1−ℓsℓ < s̄k − θ̃
k−1∑

ℓ=1

(1− θ̃)k−1−ℓs̄ℓ.
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■ For an ARA∞ condition (a) reads as

si−1 − θ
i−1∑

ℓ=1

(1− θ)i−1−ℓsℓ < s̄k − θ
k−1∑

ℓ=1

(1− θ)k−1−ℓs̄ℓ

⇒si−1 − θ̃
i−1∑

ℓ=1

(1− θ̃)i−1−ℓsℓ < s̄k − θ̃
k−1∑

ℓ=1

(1− θ̃)k−1−ℓs̄ℓ.

■ May not hold for every pair(θ, θ̃) with θ < θ̃ regardless of
s1 < ... < si−1 ands̄1 < ... < s̄k.

■ However, it holds for0 ≤ θ < 1 andθ̃ = 1 so that

(Pλ0,θ0)m (lP,m(s
∗|θ) ≥ lP,m(s

∗|1)) = 1, 0 ≤ θ < 1.
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